CA1136275A - High resolution input scanner using a two dimensional detector array - Google Patents

High resolution input scanner using a two dimensional detector array

Info

Publication number
CA1136275A
CA1136275A CA000335976A CA335976A CA1136275A CA 1136275 A CA1136275 A CA 1136275A CA 000335976 A CA000335976 A CA 000335976A CA 335976 A CA335976 A CA 335976A CA 1136275 A CA1136275 A CA 1136275A
Authority
CA
Canada
Prior art keywords
detectors
array
subject
input scanner
scan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000335976A
Other languages
French (fr)
Inventor
Robert A. Sprague
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Application granted granted Critical
Publication of CA1136275A publication Critical patent/CA1136275A/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02805Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a two-dimensional array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/19Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
    • H04N1/195Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays the array comprising a two-dimensional array or a combination of two-dimensional arrays
    • H04N1/19505Scanning picture elements spaced apart from one another in at least one direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/19Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
    • H04N1/195Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays the array comprising a two-dimensional array or a combination of two-dimensional arrays
    • H04N1/19505Scanning picture elements spaced apart from one another in at least one direction
    • H04N1/1951Scanning picture elements spaced apart from one another in at least one direction in one direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/19Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
    • H04N1/195Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays the array comprising a two-dimensional array or a combination of two-dimensional arrays
    • H04N1/19505Scanning picture elements spaced apart from one another in at least one direction
    • H04N1/19515Scanning picture elements spaced apart from one another in at least one direction in two directions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/19Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
    • H04N1/195Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays the array comprising a two-dimensional array or a combination of two-dimensional arrays
    • H04N1/19505Scanning picture elements spaced apart from one another in at least one direction
    • H04N1/19521Arrangements for moving the elements of the array relative to the scanned image or vice versa
    • H04N1/19573Displacing the scanned image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/19Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
    • H04N1/195Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays the array comprising a two-dimensional array or a combination of two-dimensional arrays
    • H04N1/19584Combination of arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors

Abstract

HIGH RESOLUTION INPUT SCANNER USING
A TWO DIMENSIONAL DETECTOR ARRAY

ABSTRACT OF THE DISCLOSURE

In an input scanner the subject to be scanned is translated in a cross scan direction relative to a two dimensional, integrated CCD detector array or the like so that successive full scan length segments of the subject are sequentially imaged onto the array. The photosensitive zones of the detectors within the different rows of the array are laterally staggered so that each of the detectors responds to a specific spatially predetermined resolution element or pixel of each scan line. The detectors generate data samples in response to those pixels, but the data samples representing adjacent pixels of any given scan line are distributed over multiple rows of the array in accordance with a two dimen-sional distribution function which depends on the staggering of the photosensitive zones of the detectors. If multiple scan lines are simultaneously imaged onto the array, buffered destaggering electronics, operating in accordance with the inverse of that distribution function may be utilized to arrange the data samples representing adjacent pixels in a serial video data stream having a conventional raster scan format. If, however, only one scan line is imaged onto the array per imaging frame, the data samples may be directly read out of the detectors in a scan line-by-scan line serial video data stream.

Description

~6~:7~ii BACKGROUND OF THE INVENTION
This invention relates to input input scanners and, more particularly, to methods and means for achieving high resolution raster input scanning throughthe use of low resolution, two dimensional image sensors, such as integrated charge coupled device (CCD) area arrays.
Others have already recognized that charge coupled devices ~CCD's) may be advantageously utilized as photosensitive detector elements for raster input scanners~ It has been shown that many mutually independent CCD's can be formed on a single chip of semiconductive material, such as silicon. Nevertheless, the chip lengths and thè CCD detector densities which can be obtained using state of the art semiconductor fabrication techniques are still not sufficient to permit the manufac-ture of an integrated linear CCD detector array having the high line scanning resolu-tion capability demanded of some raster input scanners.
In view of that limitation, some thought has been given to the seemingly simple expedient of stringing a plurality of linear integrated CCD arrays together to form a longer, composite linear detector array. However, it has been found that it is difficult to achleve and maintain the alignment of the individual integrated arrays that is essential to the linearity of the composite array. Another suggestion which .

has been made for applyin~ integrated CCD detector arrays to high resolution raster input scanning involves optlcally interlacing or stitehing the detector elements within several rows of a two dimensional integrated array to perform the scanning. See,for example, U.S. Patent No. 4,080,633 of Gary K. Starkweather, which issued March 21,1978 to the assignee of this application. That is an effective approach, but it suffers from the disadvantage of requiring relatively complex and difficult to align -25 optics for imaging the subject which is to be scanned onto the detector array.

: . .
, ~'
- 2 -' ~' ~
i .

SUMMARY OF THE INVENTION
Accordingly, an object of an aspect of the present invention is to provide relatively economical and reliable ~ ;
methods and means for performing high resolution input scanning through the use of low resolution, two dimensional image sensors~
One of the more important objects of an aspect of this invention is to provide improved methods and means for applying low resolution~ two dimensional photosensitive detector arrays to high resolution raster input scanning.
However, it should be understood that certain of the broader aspects of the invention apply to input scanning generally, without specific limitation to the scan line-by-scan line serial scanning format of a conventional raster input scanner or to the use of arrays of mutually independent detector elements. For example/ a two dimensional image sensor, such as a vidicon, could be used in carrying out .:, certain of the basic features of this invention.
More particularly, an object of an aspect of the present invention is to provide relatively straight-forward and readily maintained methods and means for applying low resolution, two dimensional integrated CCD detector ;~
arrays and the like to high resolution input scanning.
In even greater detail, an object of an aspect of the~ ;~
invention is to provide relatively econonical and reliable electro-optic methods and means for performing high ;~
resolution raster input scanning through the use of low resolution, two dimensional, integrated CCD detector arrays and the like.
Various aspects of this invention are as follows:
An input scanner comprislng the combination of a two dimensional array of photosensitive detectors,
-3- `~
3., 3~æ7~
said detectors having respective photosensitive zones which are laterally offset from one another in a line scanning direction; means for sequentially imaging succes- `
sive scan line length segments of a subject onto said array at a predetermlned framing rate as said subject ~
moves in a cross scan direction relative to said array, ~ ~.
whereby said detectors se~uentially generate data samples :~
representing respective pixels of successive scan lines;
and means coupled to said array for reading said data samples out of said detectors at said ~raming rate.
An input scanner comprising the combination of a two dimensional image sensor having a plurality of -photosensitive zones which are laterally offset from one another in a line scanning direction; means for sequentially imaging successive scan line length segments of a subject onto said image sensor at a predetermined framing rate as said subject moves in a cross scan direction relative :: : to said image sensor, whereby said photosensitive zones ` -sequentially generate data samples at said frame rate, said data samples respresenting respective pixels of . ;
successive scan lines of said subject; and means for reading said data samples out of said image sensor at ~: -said framing rate. ~ ;
An input scanning method comprising the steps of imaying successive scan line length segments of a ; subject onto a two dimensional image sensor at a predetermined framing rate as said subject moves in a cross scan direction relative to said image sensor, said image sensor having a plurality of photosensitive zones :
which are laterally staggered relative to one another in a line scanning direction, whereby data samples ;
representing respective pixels of said subject are ' ' :: -3a-', ~ :

~36~

generated at said framing rate, and reading said data samples out of said image sensor at said framing rate.
By way of added explanation, to carry out those and other objects of the invention, the subject to be scanned is translated in a cross scan direction relative to a two dimensional, inteyrated CCD detector array or ; ;
the like so that successive full scan line length segments of the subject are sequentially imaged onto the array. -~
In accordance with this invention, provision is made for laterally staggering the photosensitive zones of the det-ectors within the different rows of the array so that each of the detectors responds to a specific spatially predetermined resolution element or plxel of each scan line. The detectors generate data samples in response to those ~,``

~' ., . :

,:
.-' ~', , .

~ i ;'' :;~
'~

- 3b - ;~

3~

pixels, but the data samples representing adjacent pixels of any given scan line are distributed over multiple rows of the array in accordance with a two dimensional distribution function which depends on the staggering of the photosensitive zones of the detectors. If multiple scan lines are simultaneously imaged onto the array, buffered destaggering electronics, operating in accordance with the invorse of that distribution function, may be utilized to arrange the data samples representing adjacent pixels in a sequential manner thereby providing the scan line-by scan line serial video data stream output format of a conventional raster input scanner.

BRIEF DESCRIPTION OF THE DRAWINGS
, Still further objects and advantages of this invention will become apparent - when the following detailed description is read in conjunction with the attached drawings3, in which: -Fig. 1 is a schematic illustration of one embodiment of the present invention;
Fig. 2 is a schematic illustration of another embodiment of this Y invention;
~igs. 3-7 are layout diagrams of staggered apertslre masks which are suitable for use in the embodiments shown in Figs. 1 and 2;
Figo 8 is a schematic diagram of still another embodiment of the present :, 20 invention;
ig~ 9 is a layout diagram of a staggered aperture mask which is suitable for use in the embodiment shown in Fig. 7;
Fig. 10 is a functional block diagrAm of buffered destaggering electronics for carrying out raster input scanning when using the masks o Fig~ 9 is used in the 25 embodiment of Fig. 8; and Fig. 11 is a functional diagram of a fully integrated equivalent to the buffered destaggering electronics illustrated in Fig. 10.

~ . .

~36~7~
DETAII.ED DESCRIPTION OF THE ILLUSTRATED EMBODIMEN'IS

While the invention is described in some detail hereinbelow with specific reference to certain illustrated embodiments, it is to be understood that there is no desire to limit it to those embodiments. On the contrary, the intent is to cover all modifications, alternatives, and equivalents falling within the spirit and scope of the invention as defined by the appended claims.

Turning now to the drawings, and at this point espeeially to Fig. 1, there is a lens 21 for sequentially imaging successive full scan line length segments of a suitably illuminated subject 22 onto a two dimensional, integrated CCD detector array 23 via a staggered aperture mask 24. l`o position the successive segments of the subject 22 for imaging onto the array 23 at a predetermined framing rate, tlle subject is moved at a predetermined rate (by means not shown) in a cross scan direction relative to the array 23, as indicated by the arrow. As a general rule, the width of the subject 22, as measured in the line scanning direction, is substantially greater than the length of the array 23, as measured in that same direction. Thus, the magnification of the lens 21 is selected so that full width or scan line length segments of the subject 22 are imaged onto the array 23.

The array 23 is at least an n x N array of CCDs. In other words, it comprises N more or less equidistantly spaced and mutually independent CCD detectors 25 in each of n successive rows. In the illustrated embodiments, the detectors 25 are integrated on a single chip of semicondu~tive material, such as silicon. Accordingly, the number N of mutually independent CCD detectors 25 which may be provided in each row of the array 23 is limited by the maximum chip length and the maximum detector density which can be achieved through the use of state of the art semi-conductor fabrlcation techniques.

More than enough resolution elements or pixels to provide a high resolution definition of a sean line are imaged onto a single low of deteetors 25. However, the limi$ed number N of CCD detectors 25 which may be formed in any one row of the array 23 is insuffieien~ to obtain high resolution input scanning through the use of just one row of detectors 25.

.. . .

iL3Çi;~9 In accordance with the present invention, to perform high resolution input scanning despite the characteristicaliy low line resolution capabilities of the array 23, the photosensitive zones of the detectors 25 are laterally stag~ered or offset from one another in the line scanning direction so that individual pixels from each scan line are separately imaged onto respective ones of the dete~tors 25 inone or another of the rows of the array 23. That, of course, greatly increases the number of pixels which are detected and converted into corresponding data samples per scan line, thereby providing increased line seanning resolution. The basic concept is unaffected by whether the individual pixels which are imaged onto thedetectors 25 are from abutting segments of the scan line as in a fully sampled case9 overlapping segments of the scan line as in an undersample case.
- The individual pixels of each scan line are distributed while being imaged onto the detectors 25 of the array in accordance with a two dimensional distribution function which is dependent on the staggering of the photosensitivezones of the detectors 25. Pixels of multiple scan lines may be simultaneously imaged onto different ones of the detectors 253 but all of the pixels of each scan line are detected with a predetermined number of frames. Each of the detectors 25 responds to a spatially predetermined one OI the pixels of each sean line. Con-sequently, clock pulses (supplied by means not shown) are applied to the array 23 to shift or read out the data sarnples generated by the detectors 25 at the line scanning or framing rate. Multiple cloclc pulses may be supplied per frarme to serially read out the data samples from the detectors 25 in successive columns or rows of the array 23.
Alternatively9 there may be one clock pulse per frame to simultaneously read out the data samples from all the detectors 25 in parallel. In either case7 the number of frames required to accumulate a complete set of data samples ~or a scan line is dependent on the number of scan lines which are image~ onto the array 23 per frame.

In l;eeping with this invention, to laterally stagger the photo-sensitive zones of the detectors 25 within the successive rows of the array 23, tile mask 24 is an optically opaque screen which is formed to provide laterally staggered, optically transparent apertures 31 (Figs. 3-6) in alignment with respec-tive ones of the detectors 25 in successive rows of the array 23. As shown in Fig. 1, the mask 24 may be a metallized layer deposited directly on the array 23.
Alternatively, as shown in Fig. 2, the mask 24' may be a free standing component which is relay imaged onto the array 23 by the imaging lens 31 and suitable relay optics 32.
Indeed, there are several other approaches which can be used for laterally staggering the photosensitive zones of the detectors 24 within the successive rows of the array 23. For example, the boundary zones between the detectors 24 in successive rows of - the array 23 could be staggered and the width of the boundary zones could be controlled by applying suitable biasing voltage to control the width of the photosensitive zones of the detectors 25. In other words, the masks 24 and 24' simply represent one technique for lateraUy staggering the photosens;tive zones of the detectors 25 in the successive rows of the array 23. Nevertheless, it should be noted that the advantage o relay imag}ng the mask 241 onto the array 23 is that the masl~ 24' may be substantially larger than the array 23, thereby simplifying the mask fabrication process, particularly for higher resolution applications.
Figs. 3-5 illustrate some of the staggered aperture patterns which may be used with the mask 24 of Fig. 1. Of course, the same patterns are applicable to the mask 24' of Flg. 2 and to any of the other techniques which can be employed to laterally stagger the photosensitlve zones of the detectors 25.
The progressive staggering pattern shown in Fig. 3 causes the adjacent pixels of a scan line to be imaged onto detectors 25 in adjacent rovvs of the array 21.
It simplifies the destaggering electronics which are required to achieve a raster scanning format, but it is not optimal from the standpoint of its sensitivity to alignment errors or scanning errors. If alignrnent errors, such as an angular error in the motion of the subject 22 relative to the array 23, are of primary ocncern, the pattern illustrated 3{) in Fig. 4 is especially attractive because it minimizes the average cross scan displacement of apertures 31 which are adjacent in the line scanning direction. C)n the other hand, if ::.

, -- 7 --6;27~i visual banding in the output image (not shown) is particularly objectionable, a pseudo-random staggering pattern such as is shown in Fig. 5 may be desirable because it causes any line scanning errors to be more or less randomly distributed over several rows in the data. In short, the lateral staggering of pattern for the photosensitive zones of the detectors 25 in the successive rows of the array 23 rnay be selected to accomodate any one of several different requirements.
Figs. 3-5 illustrate staggering patterns in which the edges of respective pairs of apertures 31 for detectors 25 in successive rows of the array 23 are aligned in the cross scan direction for a so-called fully sampled application. It should, however, be understood that the apertures 31 may be paired in overlapping edge alignment for over sampling or in spaced apart edge alignment for under sampling.
A common disadvantage of using a simple rectangular array 23 of CCD
detectors 25 such as shown in Figs 1 and 2, is that some of the pixels of each scan line are likely to be imaged onto certain of the detectors 25 in regions or zones which are too close to the detector boundaries. However, that problem may be avoided, as shown in Fig. 5, by laterally staggering the detectors 25' in the successive rows of the array 23' so that the photosensitive zones are generally centered on the detectors 25' despite the lateral staggering of the apertures 31. Alternatively, as shown in Fig.
~, a rectangular CCD detector array 23 may be canted or tilted relative to the cross scan direction to more or less center the staggered apertures 31 on the individual detectors 25. ~n that event9 pixels from multiple scan lines of the subject may be simultaneously imaged onto each row of detectors 25, but that does not alter thebasic concept.
Referring to Fig. 8, to reduce the number of frames which are required to accumulate a complete set of data samples for a scan line, anamorphic optics 36 having greatèr magnification in the cross scan direction than in the line scanning direction may be used for imaging the subject 22 onto the array 23. The completeoptical system, including the lens 31 and the optics 36, is suitably selected so that cross scan height of each scan line imaged onto the array 23 is in a range anywhere between a cross scan height equal to the line sean pixel spacing (the nonanamorphic use~ and a cross scan height equal to the height of the entire array 23. In the example shown in Fig. 89 the cross scan or vertieal height of each scan line is equal to the cross scan height of the array 23 per row of detectors 25. It will, of course, be understood that it becomes increasingly difficult to achieve the f/numbers needed for high speed scanning as the anamorphic ratio of the optical system is increased.

36~7S

As will be appreciated, the line seanning resolution cannot be increaslng indefinitely simply by adding additional rows of detectors 25 to the array 23. In an integrated array 23, the number of rows n of detectors 25 is subject to the afore-men~ioned limitations on state of the art semiconductor fabrication techniques.
However, the line scanning resolution which can be achieved is generally even more restrictively limited since each of the detectors 25 requires a photosensitive zone of at least a certain minimum area to provide sufficient photosensitive response at typical illumination levels.

~ 8a -Turning to Fig. 9, one of the additional advantages of anamorphically imaging the successive segments of the subject 22 is that the areas of the photosensitive zones of the detectors 25 may be anamorphically enlarged in the cross scan direction, such as by providing the mask 24 with anamorphic apertures 31'. Preferably, the s anamporhic ratio of the photosensitive zones of the detectors 25 is related to the anamorphic ratio of the optics 31, 36, up to a limit determined by the cross scan height of the individual detectors 25. That miximizes the area pèr unit width of the photosensitive zones of the detectors 25, while ensuring that each of the detectors 25 responds to only one pixel per scan line.
The present invention may be applied to raster input scanning if suitable provision is made for assembling the data samples generated by the detectors 25 in a serial video data stream having a scan line-by-scan line format. As previously mentioned, the pixels of each scan line are distributed to the individual detectors 25 of the array 23 in accordance with a two dimensional distribution function. If only one scan line is imaged onto the array 23 per frame, the detectors 25 simultan-eously generates data samples for the same scan llne. ln that case, it is mereiynecessary to provide suitable destaggering means for assembling the data samplesfor each scan line in accordance with the inverse of the aforementioned distribution function. If, however, multiple scan lines are simultaneously ima~ed onto the array, the destaggering means must be buffered. The minimum data sample storage capacity, M, required for that buffering is given by:
M = N~+ 1][(n~ (n-2) ~ 1]
Where: N = the number of detectors 25 per row in the array 23;
X = the total number of undetected scan lines imaged onto the array 23 between the uppermost and lowermost rows of detectors 25; and n = the number of rows in the array 23.
eferring to Fig.10 there is a fwlctional block diagram of a buffered destaggering circuit which may be used to provide a video data stream having a raster scanning format if (1) the photosensitive zones of the detectors 25 are pro-.. :

.

3~75 gressively staggered and (2) n scan lines are imaged onto the array per frame ~i.e., x = O). In this instance, it is assumed that the data samples generated by the àetec-tors 25 in the successive rows of the array 23 are serially shifted along the respective rows and out of the array in parallel, with each row being read out at the line scanning or framing rate. Data samples rom the last or uppermost row of detectors 25 areserially shifted into the last stage of a n stage parallel input/serial output shift register 41, but the data samples from the other rows of detectors 25 are shifted into other stages of the register 41 via buffer registers 42-44, respectively, of progressively increasing length. Specifically, N additïonal stages are added to the registers 42-44 for each succeeding row in the array 23. Thus, the buffer register 42 for the next to last row of detectors 25 has N stages, while the buffer register 44 for the first or bottomost row of detectors 25 has N (n-l) stages.
Turning to Fig. }1, an extended CCD array 51 may be used to carry out the image detection function and the buffered destaggering function. Moreo~er, the extended array 51 may be integrated on a single semiconductor chip, providedthat the required CCD element count does not exceed the capabilities of state of the art fabrication techniques. For example, as shown, if n scan lines are imaged onto a n x N image detection segment 52 of the array 51 per frame v1a a mask 24 having progressively staggered apertures 31, a suitable shift sequence for assembling the data samples for a given scan line in adjacent sample serial order is:
1. Shift all data samples down n rows per frame;
2. Shift the n -~1 2n -~21 ... nn + n rows one stage to the left (it should be noted that each of those rows contain N -~1 CCDs as opposed to the others which contain only N CCD's);
3. Shift the contents of the leftmost stages of the n -l~ 1, 2n + 2, ... nn -~ n rows down N
elements;
4. Repeat steps 2 and 3, n- 1 additional times/frame to empty the n + 1, 2n + 2 and nn -~ n rows;
and
5. Go back to step 1 to start assembling the data samples for the next scan line.

~L9l36;~

CONCLUSION

In view of the foregoing, it will be seen that the present invention provides methods and means for achieve high resolution input scanning, inclu(ling raster input scanning, through the use of a low resolution, two dimensional, photo-sensitive detector array, such as a CCD area array. Furthermore, it will be und~r-stood that this invention may be used for scanning a variety of subjects, such as printed or handwri~ten documents, graphics, photographs, or even real scenes.
Various alternatives to and modifications of differenl: aspects of the invention heve been desc ibed, but others ~. ill s ggest hemsel~ es.

,.

~, ~f' - --11--.,~ ' .

Claims (28)

The embodiments of the invention in which an exclusive property or privilege is claims are defined as follows:
1. An input scanner comprising the combination of a two dimensional array of photosensitive detectors, said detectors having respective photosensitive zones which are laterally offset from one another in a line scanning direction; means for sequentially imaging succes-sive scan line length segments of a subject onto said array at a predetermined framing rate as said subject moves in a cross scan direction relative to said array, whereby said detectors sequentially generate data samples representing respective pixels of successive scan lines;
and means coupled to said array for reading said data samples out of said detectors at said framing rate.
2. The input scanner of Claim 1 further including means for assembling the data samples read out of said detectors in a serial data stream having a raster scanning format.
3. The input scanner of Claim 1 further including a staggered aperture mask interposed between said subject and said array for laterally offsetting the photosensitive zones of said detectors.
4. The input scanner of Claim 3 wherein the photo-sensitive zone of each detector is generally centered on the detector.
5. The input scanner of Claim 1 wherein said detectors are photosensitive devices integrated on a single chip of semiconductor material.
6. The input scanner of Claim 5 further including a staggered aperture mask interposed between said subject and said array for laterally offsetting the photosensitive zones of said detectors.
7. The input scanner of Claim 6 wherein said staggered aperture mask is deposited on and supported by said array.
8. The input scanner of Claim 6 wherein said staggered aperture mask is a free standing component, and said imag-ing means further includes relay optics for imaging said mask onto said array.
9. The input scanner of Claim 1 wherein each of said segments of said subject comprises a predetermined plurality of scan lines, and further including buffered destaggering means coupled to said detectors for assembling the data samples read out of said detectors in a serial video data stream having a raster scan format.
10. The input scanner of Claim 9 wherein said detectors and said buffered destaggering means comprise respective pluralities of charged coupled devices integrated on a single chip of semiconductor material.
11. The input scanner of Claim 9 further including an optically opaque mask interposed between said subject and said array, said mask having a two dimensional pattern of optically transparent apertures for transmitting light from said subject to respective ones of said detectors, said apertures being laterally offset from one another in the line scanning direction to define the laterally offset photosensitive zones of said detectors.
12. The input scanner of Claim 1 wherein each of said segments of said subject comprises a predetermined number of scan lines, and said subject advances in a cross scan direction relative to said array at a rate of one scan line per frame.
13. The input scanner of Claim 12 wherein said imaging means further includes anamorphic optics having greater power in said cross scan direction than in said line scan-ning direction, said optics having an anamorphic ratio selected to cause each of said scan lines to have a cross scan height greater than the width of any of said pixels in the line scanning direction.
14. The input scanner of Claim 13 wherein the photosen-sitive zones of said detectors are elongated in the cross scan direction to provide said detectors with increased sensitivity per unit width of said photosensitive zones as measured in said scanning direction.
15. The input scanner of Claim 14 further including means coupled to said detectors for assembling the data samples read out of said detectors in a serial video data stream having a raster scan format.
16. The input scanner of Claim 15 wherein each of said segments of said subject comprises a predetermined multiple number of scan lines, and said means for assembling said samples comprises buffered destaggering means for accumulating said samples at said framing rate and for serially outputting said samples in accordance with said raster scan format.
17. The input scanner of Claim 1 wherein said array comprises multiple rows of detectors, each of said segments of said subject comprises a predetermined number of scan lines, and said subject advances in said cross scan direction relative to said array at a rate of one scan line per frame.
18. The input scanner of Claim 17 wherein said array is rectangular and is titled relative to the cross scan direction at an angle selected to cause said lateral staggering of the photosensitive zones of said detectors.
19. The input scanner of Claim 18 further including buffered destaggering means coupled to said detectors for assembling said data samples in a serial video data stream having a raster scan format.
20. The input scanner of Claim 18 further including a staggered aperture mask interposed between said subject and said array to define said photosensitive zones, said mask having progressively staggered optically transparent apertures for laterally progressively offsetting said photosensitive zones in the line scanning direction.
21. The input scanner of Claim 20 further including buffered destaggering means coupled to said detectors for assembling said data samples in a serial video data stream having a raster scan format.
22. An input scanner comprising the combination of a two dimensional image sensor having a plurality of photosensitive zones which are laterally offset from one another in a line scanning direction; means for sequentially imaging successive scan line length segments of a subject onto said image sensor at a predetermined framing rate as said subject moves in a cross scan direction relative to said image sensor, whereby said photosensitive zones sequentially generate data samples at said frame rate, said data samples representing respective pixels of succes-sive scan lines of said subject; and means for reading said data samples out of said image sensor at said framing rate.
23. The input scanner of Claim 22 further including a staggered aperture mask interposed between said subject and said image sensor for defining said photosensitive zones.
24. The input scanner of Claim 23 wherein said mask is deposited on and supported by said image sensor.
25. The input scanner of Claim 23 wherein said mask is a free standing member, and further including relay optics for relay imaging said mask onto said image sensor.
26. The input scanner of Claim 23 wherein said subject is advanced relative to said image sensor at a rate of one scan line per frame, and each of said segments includes multiple scan lines of said subject; and further including buffered destaggering means coupled to said image sensor for formatting said data samples into a serial video data stream having a raster scan format.
27. The input scanner of Claim 26 wherein said imaging means is anamorphic with greater magnification in the cross scan direction than in the line scanning direction, whereby said segments of said subject are anamorphically imaged onto said image sensor.
28. An input scanning method comprising the steps of imaging successive scan line length segments of a subject onto a two dimensional image sensor at a predetermined framing rate as said subject moves in a cross scan direction relative to said image sensor, said image sensor having a plurality of photosensitive zones which are laterally staggered relative to one another in a line scanning direction, whereby data samples representing respective pixels of said subject are generated at said framing rate; and reading said data samples out of said image sensor at said framing rate.
CA000335976A 1978-10-25 1979-09-19 High resolution input scanner using a two dimensional detector array Expired CA1136275A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/954,507 US4204230A (en) 1978-10-25 1978-10-25 High resolution input scanner using a two dimensional detector array
US954,507 1997-10-20

Publications (1)

Publication Number Publication Date
CA1136275A true CA1136275A (en) 1982-11-23

Family

ID=25495519

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000335976A Expired CA1136275A (en) 1978-10-25 1979-09-19 High resolution input scanner using a two dimensional detector array

Country Status (5)

Country Link
US (1) US4204230A (en)
EP (1) EP0010926B1 (en)
JP (1) JPS5560383A (en)
CA (1) CA1136275A (en)
DE (1) DE2964434D1 (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623103Y2 (en) * 1978-12-18 1981-05-29
JPS5919666B2 (en) * 1978-12-27 1984-05-08 肇産業株式会社 matrix array camera
JPS5672575A (en) * 1979-11-19 1981-06-16 Toshiba Corp Picture input unit
US5871391A (en) * 1980-03-27 1999-02-16 Sensor Adaptive Machine Inc. Apparatus for determining dimensions
US5825017A (en) * 1980-03-27 1998-10-20 Sensor Adaptive Machines Inc. Method and apparatus for determining dimensions
CA1175360A (en) * 1980-07-03 1984-10-02 Xerox Corporation Color input detector array
DE3261248D1 (en) * 1981-01-14 1985-01-03 Morton Nadler Image scanning method and device
US4348593A (en) * 1981-01-29 1982-09-07 Xerox Corporation Twisting geometry optical system utilizing imaging array with time delay segments
EP0066767B1 (en) * 1981-05-25 1990-10-24 Kabushiki Kaisha Toshiba Solid state image sensor
EP0070620A3 (en) * 1981-07-20 1985-11-06 Xerox Corporation High density imager
US4910401A (en) * 1982-01-20 1990-03-20 The Boeing Company LWIR sensor system with improved clutter rejection
FR2520875A1 (en) * 1982-02-01 1983-08-05 Aerospatiale METHOD AND DEVICE FOR DETECTING FOREIGN BODIES IN A LIQUID
EP0089148B1 (en) * 1982-03-15 1987-02-25 The Board Of Trustees Of The Leland Stanford Junior University Multiple line detector for use in radiography
US4551758A (en) * 1982-06-09 1985-11-05 Canon Kabushiki Kaisha Image pick-up device and system
US4603354A (en) * 1982-06-09 1986-07-29 Canon Kabushiki Kaisha Image pickup device
US4496984A (en) * 1982-11-18 1985-01-29 Xerox Corporation Raster input/output scanner
US4589030A (en) * 1983-07-25 1986-05-13 Kley Victor B Solid state camera
DE3346589A1 (en) * 1983-12-23 1985-07-18 Eltro GmbH, Gesellschaft für Strahlungstechnik, 6900 Heidelberg SCANING METHOD WITH AND INQUIRY METHOD OF DETECTOR ROWS AND RELATED ARRANGEMENT
US4691114A (en) * 1984-02-29 1987-09-01 Canon Kabushiki Kaisha Original reader with variable magnification and time delay
JPS60247369A (en) * 1984-05-23 1985-12-07 Dainippon Screen Mfg Co Ltd Method and device for improving resolution of array sensor
IL78398A (en) * 1985-05-10 1990-01-18 Honeywell Inc Readout apparatus for a laser angular rate sensor
FR2599919A1 (en) * 1985-08-02 1987-12-11 Trt Telecom Radio Electr THERMAL CAMERA WITH VERTICAL SCAN
US4720746A (en) * 1985-08-05 1988-01-19 Eastman Kodak Company Frame transfer CCD area image sensor with improved horizontal resolution
US4769679A (en) * 1986-04-21 1988-09-06 Fuji Photo Film Co., Ltd. Photographic printing system
US4843481A (en) * 1987-11-30 1989-06-27 Polaroid Corporation CCD scanning apparatus for use with rotary head printer
DE3837063C1 (en) * 1988-10-31 1990-03-29 Reimar Dr. 8000 Muenchen De Lenz
US4994907A (en) * 1989-08-28 1991-02-19 Eastman Kodak Company Color sensing CCD with staggered photosites
US5083214A (en) * 1990-05-02 1992-01-21 Eastman Kodak Company Apparatus and methods for extracting data from a scanned bit-mapped data strip
FR2676153B1 (en) * 1991-04-30 1993-07-16 Thomson Trt Defense HIGH RESOLUTION INFRARED IMAGE FORMATION METHOD AND THERMAL CAMERA WITH SINGLE-DIRECTIONAL SCANNING FOR USE THEREOF.
US6243131B1 (en) 1991-05-13 2001-06-05 Interactive Pictures Corporation Method for directly scanning a rectilinear imaging element using a non-linear scan
DE4123791C2 (en) * 1991-07-18 1995-10-26 Daimler Benz Aerospace Ag Digital area camera with multiple optics
US5221975A (en) * 1991-11-12 1993-06-22 Eastman Kodak Company High resolution scanner
US5686960A (en) * 1992-01-14 1997-11-11 Michael Sussman Image input device having optical deflection elements for capturing multiple sub-images
GB9309445D0 (en) * 1993-05-07 1993-06-23 Crosfield Electronics Ltd Image sensing assembly
US5489994A (en) * 1993-10-29 1996-02-06 Eastman Kodak Company Integrated apertures on a full frame CCD image sensor
CA2135676A1 (en) * 1994-11-14 1996-05-15 Jean Dumas Device to enhance imaging resolution
US5489940A (en) * 1994-12-08 1996-02-06 Motorola, Inc. Electronic imaging system and sensor for correcting the distortion in a wide-angle lens
US6009214A (en) * 1997-10-28 1999-12-28 Hewlett-Packard Company Multi-resolution color contact-type image sensing apparatus
JP3461275B2 (en) * 1997-12-25 2003-10-27 キヤノン株式会社 Photoelectric conversion device and camera using the same
FR2776456B1 (en) * 1998-03-20 2000-06-16 Centre Nat Etd Spatiales IMPROVEMENT IN IMAGE ACQUISITION BY BROOM PUSH
TW475330B (en) * 1999-10-29 2002-02-01 Hewlett Packard Co Photosensor array with multiple different sensor areas
GB0016081D0 (en) * 2000-07-01 2000-08-23 Secr Defence Optical mapping apparatus
US6667818B1 (en) * 2000-10-23 2003-12-23 Umax Data Systems, Inc. Multiple-field sensor for scanning system
US20020176003A1 (en) * 2000-10-25 2002-11-28 Seder Phillip Andrew Watermark reading kiosks
GB2418512B (en) * 2001-10-26 2006-07-05 Symbol Technologies Inc Semiconductor device adapted for imaging bar code symbols
SE523681C2 (en) 2002-04-05 2004-05-11 Integrated Vision Prod System and sensor for mapping properties of an object
US20040207890A1 (en) * 2003-04-16 2004-10-21 Breswick Curt Paul Method and apparatus for controlling shifting of data out of at least one image sensor
JP2004328384A (en) * 2003-04-24 2004-11-18 Brother Ind Ltd Image reading apparatus, read resolution confirming method, and image sensor
US7329860B2 (en) 2005-11-23 2008-02-12 Illumina, Inc. Confocal imaging methods and apparatus
AT502409B1 (en) 2006-05-19 2007-03-15 Arc Seibersdorf Res Gmbh Object surface test unit has planar imaging sensor parallel and moving relative to the sensor so that the motion is at an acute angle to the pixel rows
US7791013B2 (en) * 2006-11-21 2010-09-07 Illumina, Inc. Biological microarray line scanning method and system
US7813013B2 (en) * 2006-11-21 2010-10-12 Illumina, Inc. Hexagonal site line scanning method and system
DE102017106831A1 (en) * 2017-03-30 2018-10-04 Sick Ag Camera and method for detecting objects moving relative to the camera in a conveying direction

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848083A (en) * 1965-01-04 1974-11-12 Xerox Corp Staggered scan facsimile
US3461229A (en) * 1965-08-17 1969-08-12 Jess Oppenheimer Electro-optical reproduction method
US3746883A (en) * 1971-10-04 1973-07-17 Rca Corp Charge transfer circuits
US3869572A (en) * 1971-12-30 1975-03-04 Texas Instruments Inc Charge coupled imager
US3947627A (en) * 1972-10-30 1976-03-30 Matsushita Electric Industrial Company, Limited Facsimile system
US4071853A (en) * 1974-03-29 1978-01-31 Sony Corporation Solid state television camera
US3988619A (en) * 1974-12-27 1976-10-26 International Business Machines Corporation Random access solid-state image sensor with non-destructive read-out
JPS5937629B2 (en) * 1975-01-30 1984-09-11 ソニー株式会社 solid-state imaging body
JPS51132719A (en) * 1975-05-13 1976-11-18 Sony Corp Solid-image pickup device
JPS52144992A (en) * 1976-05-28 1977-12-02 Hitachi Ltd Light receiving element
US4114037A (en) * 1977-05-16 1978-09-12 Northern Telecom Limited Multiple lens system for an optical imaging device

Also Published As

Publication number Publication date
EP0010926B1 (en) 1982-12-29
EP0010926A1 (en) 1980-05-14
DE2964434D1 (en) 1983-02-03
US4204230A (en) 1980-05-20
JPS6364114B2 (en) 1988-12-09
JPS5560383A (en) 1980-05-07

Similar Documents

Publication Publication Date Title
CA1136275A (en) High resolution input scanner using a two dimensional detector array
EP0698994B1 (en) Sensor assembly providing gray scale and color for an optical image scanner
US6414760B1 (en) Image scanner with optical waveguide and enhanced optical sampling rate
CA1188396A (en) High resolution imager employing staggered sensor structure
US4432017A (en) Adjacent bilinear photosite imager
EP0019777A1 (en) Electronically abutting parts of an electronic image produced by linear arrays of photosensitive elements
US4712137A (en) High density CCD imager
US4873569A (en) Image reader having spectroscope for color separation
EP0043721A2 (en) Device for scanning coloured originals
US4761683A (en) Charge transfer in multiple sensor row arrays
JP2985959B1 (en) Color imaging apparatus and image reading apparatus using the same
EP0057584B1 (en) Optical scanning apparatus
US4918506A (en) Selectable resolution line-scan image sensor
EP0070620A2 (en) High density imager
JPH11313194A (en) Registration device and method for imaging in variable resolution
JPH03295354A (en) Picture reader
Sprague et al. High resolution multispectral linear focal plane using an area image sensor
JPH0548841A (en) Ccd line sensor
US7605958B2 (en) Design parameters for a multi-row linear photosensor array
JPH01238384A (en) Solid-state image pickup device
JP2515000Y2 (en) Color image sensor
KR930007530B1 (en) Image sensor
EP0382568A2 (en) Image sensor and photoelectric conversion apparatus using the same
JPH063959B2 (en) Solid-state image sensor
JPS63278460A (en) Contact type image sensor

Legal Events

Date Code Title Description
MKEX Expiry
MKEX Expiry

Effective date: 19991123