Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCA1075498 A
Publication typeGrant
Application numberCA 290110
Publication date15 Apr 1980
Filing date2 Nov 1977
Priority date2 Nov 1977
Also published asCA1075498A1, US4212535
Publication numberCA 1075498 A, CA 1075498A, CA 290110, CA-A-1075498, CA1075498 A, CA1075498A
InventorsDavid M. Makow, Corey L. Sanders
ApplicantNational Research Council Of Canada, David M. Makow, Corey L. Sanders
Export CitationBiBTeX, EndNote, RefMan
External Links: CIPO, Espacenet
Ultraviolet radiation dosimeter
CA 1075498 A
Abstract
ABSTRACT OF DISCLOSURE
A method for detecting, monitoring or measuring visible and ultraviolet radiation exposure wherein a liquid crystal element covered with a coating layer trans-parent to the radiation is placed in the path of the radiation to be monitored and then the shift of the spectral reflectance or transmittance of the element is measured, this shift being a measure of the radiation dosage. This shift may be measured using reference liquid crystal elements or a spectrophotometer or similar measuring devices.
Claims(3)
CLAIMS;
1. A device for detecting, monitoring and measuring visible and ultraviolet radiation exposures or doses comprising at least one first liquid crystal element mounted on a card or plate for positioning in the path of the radiation to be monitored and at least one second liquid crystal element mounted adjacent the first element, said first element covered with a coating layer transparent to radiation, said second element masked or covered with a coating layer impervious to all or part of the radiation and having been pre-exposed to radiation of the kind being measured to cause a color change, the amount of the radiation pre-exposure having been determined and being a measure of the amount of radiation the first liquid crystal element receives when a color change occurs which brings the two colors into a color match condition.
2. A device for detecting, monitoring or measuring visible and ultraviolet radiation exposure or doses comprising at least one first liquid crystal element mounted on a card or plate for positioning in the path of the radiation to be monitored and at least one second liquid crystal element mounted adjacent the first element, said first element covered with a coating layer transparent to radiation, said second element masked or covered with a coating layer impervious to all or part of the radiation such that a noticeable color change of the first element as compared to the second indicates an amount of radiation having been received.
3. A method of detecting, monitoring or measuring visible and ultraviolet radiation exposure or doses comprising: positioning a liquid crystal element covered with a layer transparent to the radiation in the path of the radiation to be monitored and measuring the shift of the spectral reflectance or transmittance of the element, said shift being a measure of the radiation dosage and wherein the measuring of the shift of the spectral reflectance or transmittance is done by means of a series of reference liquid crystal elements which has been exposed to measured amounts of radiation.
Description  (OCR text may contain errors)

~754~

This invention reLates to ~ me-thod and apparatus usir.g liquid cr~stals for indicatiny and measuring the exposure of objects to radiation especially ultraviolet light radiation.
Liquid crystals have recently found wide-spread application for a variety of uses most especially as te~perature indicators. A heat sensitive novelty device is cescribed in United States Patent No. 3,802,945 issued April 9, 1974 to B.G. James. Another use for liquid crystals has been an imaging system using ultraviolet radiation.
Examples of this are described in United States Patent Mo:
3,655,971 issued April 11, 1972 to W.E.L. Haas et al and United States Patent No: 3,804,618 issued April 16,1972 to E. Forest et al.
The present invention is concerned with an apparatus to record and/or evaluate the exposure (temporally integrated irradiation~ of objects to ultraviolet ~U.V.~
radiation e.g. human skin to erythemal exposure, dairy products to changes in quality by U.V., art objects by fading from U.V.
exposure and damage to conjunctiva from exposure to welding arcs. There are several methods in use at the present time to measure exposure to radiation. These incluae: (1) by observing the color change of fading standards such as plastics, wools, papers. (2~ by measuring the U.V. radiation at intervals and integrating. ~3~ by using an actinometer and (4) by spectral ~Jeighted integration and temporal integration These all have certain drawbacks, e.g. wool standards are not sensitive enouyh for use in protecting sensitive mate-ria~s and the other methods require bulky and expensive equipment. Anothex method of monitoring radiation exposure is described in a paper entitled "Possible dosimeter for ultraviolet radiation" by A. Davis, G.H.~. Deane and B.L. Biffey 3~0~754~8 in Nature Vol. 261, May 13, 1976. This paper su~gests the use of certain plastics i.e. polysulphone and polyphenylene oxides for ult~aviolet dosimeters.
It is an object of -the present invention to provide a method and apparatus for detecting, monitoring, and rneasuring U.~. radiation exposure amounts or doses.
This and other objects of the invention - are achieved by method for detecting, monitoring or measuring visible and ultraviolet radiation exposure wherein a liquid crystal element covered with a coating layer transparent to the radiation is placed in the path of the radiation to be monitored and then the shift of the spectral re~lectance or transmittance of the element is measured, this shift being a measure of the radiation dosage. This shift may be measured using reference liquid crystal elements or a spectrophoto~eter or similar measuring devices.
This and other objects of the invention are also achieved by a device incorporating at least one ~ -liquid crystal element for positioning in the path of the radiation to be monitored and at least one similar liquid crystal element located at an adjacent position and covered with a mask impervious to the radiation being monitored for references purposes. This is a preferred version when the liquid crystal used is of a variety that is not temperature dependent. In another oreferred version, the device is made up of several pairs of elements to cover a temperature range~ if the liquid crystal is temperature sensitive. This version can be used as a temperature indicator at the same time.
The single drawins illustrates a radiation monitoring device with four pairs of elements.
It i~ well known that liquid crystal materials exhibit color changes at certain temperature levals

-2-` "'':''.. !. . ,: , ~7~49~ -with the color chanye temperature point being characteristic of the specific type of liquid crystal. It has been found that 1~ uid crystals are sensitive to visible and ultraviolet radiation ~ith the color change temperature point changing ~lowering~ wlth radiation amount or dosage. This change, although not directlv linear with radiation dosage, can be measured and by means of a calibrated standard, a useful monitor is achi~ved~
Referrin~ to the figure, a monitor made 10 up of four pairs of elements is shown mounted on a suitable card or plate 10. The elements on the upper row marked E~l are the monitoring elements and those on the lower row marked ER are for reference purposes. Although only one pair of elements is needed if the device is used at a certain tempe-rature or if it is made up of a temperature insensitive ; liquid crystal, four pairs are used here for the device ~ working in a range 20 - 26C. The monitoring elements are ; chosen to function at these temperatures. Each reference element is normally of the same liquid crystal material as its mate in the pair and is covered with a masking material to shield it from the radiation being monitored. The monitoring elements are also covered with a thin coating but not containing a U.V. absorber. The simplest method of calibration is to pre-expose calibration elements until the color change occurs and then subsequent exposure of the monitoring element will be equal to the pre-exposure when the two elements reach the same color. A graded series of calibration references of course can be set-up by varied amounts of pre-exposure.
The liquid crystal coatings are deposited on a black coated substxate if the wavelength of the reflected radiation is to be an indicator of the shift or they are deposited on a transparent sub strate if tbe wavelength of 7~4~8 the transmitting radiation is the indicator of the shift.
These devices may be used by sunbathers or persons wishing to recelve a suntan. The U.V. exposure required to produce a minimum erythemal response on the untanned human skin is more than that reauired to produce a visible change in the color of the liauid crystal. The liquid crystal device may be used to predict and thus prevent the resultant sunburn. It can also be used to monitor the U.V. exposure during suntanning which i~ required for health purposes. They can be used in househould situations to predict Eading of drapes, carpets or furniture and in museums to predict damage to art objects, They could be used to assist in the measurement of the resistance to fading of materials by measuring the exposure which the materials - receive before changing color or physical or chemical charac-teristics. They can be used to predict spoilage of butter and milk. They can be used to indicate that the exposure to welding arcs and other sources of U.V. may be damaging to the eyes of the skin.
The wavelength region where the liquid crystal is most sensitive to modification is in the U.V.
but there is also sensitivity in the visible, but at a lower level.
The relative spectral sensititivy can be altered by coating the samples by spectrallv selective absorbing materials. The radiation sensitivity can be altered by covering both the monitoring and reference sampl~s by additional nonselective U.V. absorbers.

Classifications
International ClassificationG01J1/50, A61N5/00
Cooperative ClassificationG01J1/50
Legal Events
DateCodeEventDescription
15 Apr 1997MKEXExpiry